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J. Phys. A: Math. Gen., Vol. 12, No. 11, 1979. Printed in Great Britain 

LE’ITER TO THE EDITOR 

Thermodynamics in multiply connected spaces 

S D Unwint 
Department of Theoretical Physics, The University cf Manchester, Manchester M13 9PL, 
England 

Received 31 July 1979 

Abstract. We perform a covariant calculation of the finite-temperature stress-energy- 
momentum matrix elements for the conformally coupled, massive scalar field in two flat, 
spatially compact, multiply connected spaces, R1@Gz and RIQB1,  the latter being 
non-orientable. The interrelationship of the resulting elements is investigated from a 
thermodynamic viewpoint, and we find this interrelation to be independent of the conformal 
coupling chosen. Also, we consider the spin-1 field in the same spaces, and finally discuss 
thermodynamics in Robertson-Walker spacetimes with underlying manifolds R’ @ Gz and 
R’OBI. 

1. Introduction 

We shall first set about calculating the finite-temperature stress-energy-momentum 
matrix elements (which we may call the stress expectation values since the in and out 
vacua are the same) by covariant means (Dowker and Critchley 1976, Dowker and 
Banach 1978, De Witt er a1 1978) for a conformally coupled, massive scalar field in two 
flat, spatially compact, multiply connected spaces, R’O G2 and R’ 0 B1 (Wolf 1967). 
The interrelationship of the resulting elements will be investigated from a ther- 
modynamic viewpoint, and we find these interrelations to be independent of the 
conformal coupling chosen. Also, we consider the spin-1 field in the same spaces, and 
finally discuss thermodynamics in curved spacetimes with the above underlying mani- 
folds. 

( T,,) is calculated from the scalar field Feynman propagator A(x, x ’ )  for the 
spacetime satisfying 

(V,V, + m2+R/6)A(x, x ’ ) =  -S (X ,  x ’ ) .  

Both multiply connected spaces are covered by R4, and choosing g,,= 
diag(1, -1, -1, -l), wemayputR =0,V,-,a,.A(x,x’)isthepropagatorinR1@R3/r, 
r being isomorphic to the _fundamental group of the multiply connected space, and is 
related to the propagator A(x, x ’ )  in Minkowski space by 

A(x, x ’ )  = 1 d(x, x ’y ) ,  E r. 
Y 

To obtain the finite-temperature propagator, we follow the prescription of Brown and 
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Maclay (1969), whereby 

A5(x, x ‘ )  = 2 A(x, x’-irph), 
r = - x  

p being the inverse temperature and A the timelike unit vector (1 ,0 ,0 ,0) .  We have 
taken the chemical potential to be zero. The orientable and non-orientable spaces, Gz 
and B1 respectively, can be represented by the point identifications 

in the covering space, where n, p ,  k are integers. Hence, our propagators are 

m m  
A”,(x, x’) = - [(t - t ‘ -  irp)* - (x - x ’ y n P k ) *  - ic]-”* 

8 7  n,p,k,r 
-X 

x H‘:’(m[(t - t’ - irp)’ - (x - X ’ Y n p k ) *  - icI1’*), 

Hi2’ being a Kankel function, and likewise for Ag1(x, x‘) with y replaced by y’ .  We note 
that in each case the contribution from n-even terms gives the propagator for the 
spacetime with a 3-torus spatial section (211 x 212 x 213), the n-odd terms giving the Gs 
and B1 correction contributions. We shall likewise split the stress expectation values 
into the 3-torus value (TfiY)’ and the Gz, B1 corrections (T,y)&2, (TcIy)i;, respectively. 
(7‘’”) is expressed as the coincidence limit of a bilinear operator acting on the Feynman 
propagator (De Witt 1975, Dowker and Critchley 1976): 

(T,“) = i lim i$a,aa,t-gg,Ytg 1 A U ’  a,a,,-%(g,p,aP’a,~+ g,,,a‘a,) 
x”x 

+ ig,,,,(aPap + ap,ap’ + 2m2) + ;g,,,m 2 ]Ao ( x ,  x ’ ) .  

The properties of the propagators allow us to write 

lim a,d,,A’(x, x’) = lim S , ~ ~ ~ , ~ ” ~ , d , A P ( x ,  x ‘ ) ,  
x”x x”x 

and we obtain for the non-zero stress expectation values 

-X 

- mpP3K3(mp) diag(rzPz, 4nZ1:, 4p21:, 4k21:)], 

+3(2n + 1)’l: diag(0, 1 ,0 ,0)+4(y  --pl2)’ diag(1, 1 ,0 ,  1) 

+4(z -kl# diag(1, 1, 1, O)]}, 
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-00 

- m+-3Ks(m+){3 diag[r2P2, (2n + l)’l;, 0, 4k213] 

+4(y -pU2 diag(LL0, Nil, 
where 

p =(r2p2+4n21; +4p21$ +4k213)1/2, 

v=[r2pZ+(2n + 1)’l: +4(y -p1~)~+4(z  - k13)2]1/2, 
+=[r2p2+(2n +1)’1: +4(y-p/2l2+4k 2 1 3 1  2 1/2 , 

Kn is a modified Bessel function of the third kind, and in E’, we drop the infinite 
n = p = k = r = 0 Minkowski space term. Figures 1 and 2 show plots of (Too)‘+ ( To0)l;, 
against y and /3 for certain values of the other parameters. 

2. Thermodynamics 

Components of the stress tensor expectation values are usually taken to describe the 
energy density, momentum and stresses of the quanta associated with the field. In the 
derived expressions for (T,,”), the r = 0, zero-temperature contributions are the well- 
known Casimir or vacuum stresses, the physical interpretation of which is perhaps less 
clear, but may be associated with the concept of virtual particles. Here we shall show 

’T 

FQ” 1. (To0)’+(Too)& plotted against y/ll for 12, l~+a,  m = 0. Symmetric about 
y I l 1 =  0. 
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2. ( T o ~ ) ’ + ( T o ~ ) ~ ; ,  plotted against @ / l l  for 12,  lj+oo, m = O .  

that a simple thermodynamic relation exists between components of ( Tw”) for both the 
finite-temperature and vacuum parts. 

The total energy E in either Gz or B1 is given by 

E = I (Too> d3x, 
V=4111213 

where (TO’) is the corresponding energy density (TO’)’ + (Too)”. We might expect the 
macroscopic properties of the quantum gas to satisfy 

(aE/aV)@ = -[a(/3P)/@]V, (3) 

although what we identify with the classical pressure P is not yet apparent. This 
equation is classically rooted in the principle of virtual work at a boundary, but in our 
case we require a different interpretation as we are considering spaces without 
boundaries. Looking at the 340111s ( Twu)’, we see that the symmetry between inverse 
temperature and the torus dimensions manifests itself in equations which we may 
interpret to be the non-isotropic pressure equivalents to (3), that is 

a(li(ToO)’)/ali = a(/3(Zi)’)/a/3 (no sum on i), (4) 

where we make the identifications Pi = -( T:)‘. The correction terms have a positional 
dependence, and we generalise (2) to define the quantities 
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suLh that E = V( To ). We see that (T,”)‘ = (T,”)’, and the non-zero components of 
(T,“)” are 

îi 

rv -m 
(T,’)& = - {w-’Kl(mw) diag(1, 1, 0,O) 

8 ~ 1 ~ 1 3  n.r 
-m 

- mo-’Kz(mw) diag[r2@, (2n  + l)’l?, 0, O]}, 

-m 

- ~ T - ’ / ’ K s / ~ ( ~ T )  diag[r2/3’, (2n  + l)’l:, 0,  4kZ1:]}, 
2 2 1/2 where w = [r2/3’+ (2n  + 1) 11] and T = [ r Z B Z  + (2n  + 1)’l: +4k21:]’/2. We now find 

a(j i(2))/aji  = a(B(?j)/ap (no sum on i), ( 5 )  

where ( T,”) = ( T,”)’ + ( T,”)”. 

3. The spin-1 field 

The massive and massless spin-1 field stress expectation values may be expressed as 
multiples of the minimally coupled scalar field values, relating fie& of the same mass in 
the same space (Unwin 1979). Since aG2 = q5 = aB1, the scalar (T,’) are independent of 
the conformal coupling chosen (De Witt 1975), and we may give the relevant spin-1 
values in terms of the previously calculated scalar values. We have, for the massless 
spin-1 field, 

hl N N 

o(T,’)’ = 2(T,”)’, O(T,”)& = -W,’)&, o(Twu)il = 0, 

and for the massive spin-1 field, 

Hence the spin-1 (c) values satisfy ( 5 ) .  

4. Discussion 

Classically, the pressure may be defined in terms of the Helmholtz free energy F as 

pi = -liV-l(aF/ali)~,,i~i, 

E = Ca(/3F)/aPlv, 

liV-’(aE/aIi),w,*i = - [ a W i ) / ~ I v ,  

where 

and these pressures then satisfy 

the modification of (3) for non-isotropic pressure. These pressures coincide exactly 
with the previously calculated volume-averaged field pressures -(Ti ) (no sum), which 7 
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may be shown explicitly using the expressions for the scalar field Helmholtz free 
energies F = F‘ + F”, 

-m -m 

-m 

F‘ being half the 3-torus value. We conclude that the principle of virtual work applies 
over the volume as a whole rather than the idea of work being done at a boundary. 
Dowker and Critchley (1977) reach a similar conclusion for the case of a scalar field 
propagating in an Einstein univeze S3. 

We note that the quantities (T,,”), and hence (5 ) ,  are independent of the conformal 
coupling constant chosen for the scalar field. In the limit m + 0, the scalar field 
considered is conformally invariant, as is t k m  = 0 spin-1 (electromagnetic) field, so in 
each case we have ( TW”) = 0, and hence (T,,”) = 0, which may be rewritten 

3 

i = l  
E = PiV. 

We interpret this to be the equation of state for an ideal quantum gas when the pressure 
is non-isotropic. We see that conformal invariance of the massless scalar field is not 
required for (6) to be satisfied. 

So far we have considered flat spacetimes, but of course, specifying the manifold, in 
our case R1@Gz or R’@B1, does not uniquely define the local spacetime structure. 
(See Geroch (1971) for an interesting discussion of general relativity from a global 
viewpoint.) The Robertson-Walker line element 

ds2= dt2-a2(t)(dX2+dy2+dz2), (7) 

for example, may describe the local structure of a spacetime with the underlying 
manifold R’@ Gz or R’@B1, provided we make the appropriate point identifications 
( la) or ( l b )  in the flat spatial sections. The concept of thermal equilibrium in 
non-stationary spacetimes has been discussed elsewhere, and we refer the reader to a 
Letter by Kennedy (1978) and the references therein. The metric (7) is conformally 
related to the flat metric, and the conformal invariance of the electromagnetic and 
massless scalar fields considered allows a straightforward calculation of ( T,,”)R-W. In 
terms of the flat space results (T,,”), we have 

( T , , ” ) ~ - ~  = ~ - ~ ( t ) ( ~ ~ ” ) + ( e , , ” )  

for either field, where (e,,”) is a function only of a and its time derivatives (Bunch and 
Davies 1977), and depends upon the field considered. The ~ - ~ ( r )  effectively scales the 
parameters, li + a(t)li,  /3 + a(t)B and x -* a ( t ) x  in (T,,”), describing an expanding and 
cooling universe (if U > 0), while (e,,’) is the source of the familiar trace anomaly. We 
discover that the finite-temperature contribution to (T,, ) satisfies the ther- 
modynamic relation (9, whereas the same is not true of the vacuum contribution. The 
latter may be separated into two distinct parts, depending upon the physical origins of 
the stress. Firstly, there is the zero-temperature part of a-‘(r)(T,’> which is a 

Y R-W 
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consequence of the closure of the manifold, that is, results from the global properties of 
the spacetime, and this part satisfies (5 ) .  The second part, (6,’) is a curvature effect, that 
is, a consequence of local properties of the spacetime, and does not satisfy (5 ) .  
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